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1 Introduction

Many datasets on Australian Drosophila (fruit fly) species have been collated and studied to investi-
gate questions around climate adaptation, species distribution limits, and population genetics (Sandra
B. Hangartner and Griffin, 2015). In this report, we investigate one such dataset (Loeschcke, Bundgaard,
and Barker, |2000) which has collected various thorax and wing measurements, and focus on the classi-
fication of two such species, Aldrichi and Buzzatii, based on these traits.

In the study, the flies were taken from 5 Queensland populations: Binjour, Gogango Creek, Grand-
hcester, Oxford Downs, and Wahruna. They were kept in the lab for five generations at 25°C, and
many thorax and wing measurements were taken on progeny of the fifth generation, which were reared
at three temperature treatments (20, 25, and 30°C) (Sandra B. Hangartner and Griffin, [2015). Each
measurement was replicated 3 times across 10 different vials.

2 Exploratory Data Analysis and Cleaning

2.1 Exploring the Dataset

There are n = 1, 731 measurements and 20 columns in the original dataset. A summary of the columns
is as follows:

e The majority of the columns are related to wing and thorax measurements (in mm).

e The temperature, vial, and replicate columns are related to the experimental setup of the study,
and may or may not be relevant predictors for species classification. The relevance of these features
will be investigated in the next subsection.

e Since the lab populations were collected in 1994, there is only one Year _start and Year_end value
for all the measurements, so this feature is redundant.

e The population from which each measurement was taken is given in two forms — the location name,
Location, and its geographical coordinates, Latitude and Longitude. These are equivalent, so
we choose to ignore the Latitude and Longitude columns, as it is clearer from Location that it
is a categorical variable.

After cleaning up the columns, there was one invalid value in Thorax_length and wing loading. Both
values belonged to the same measurement, so it was removed for the rest of the analysis.

2.2 Working with Categorical Variables

Some columns like Sex and Population are categorical variables. For our models, these need to be
encoded as numeric values. The easiest way to do this is to use arbitrary integer mappings. However,
we avoid doing this, as this can imply ordinal relationships that are not there. For example, if we
encoded the five Population names as the integers 1-5, a model may compute a summary statistics like
the “average location”, which would not make much sense.
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Instead, we use a one-hot encoding scheme to create binary indicators for each category and to
avoid creating false ordinal relationships from categorical variables. For Population, this results in five
new binary variables: Population Binjour, ..., Population Wahruna. Importantly, we also encode the
replicate and vial columns in the same way. Even though they are numeric (replicates numbered 1-3
and vials numbered 1-10), these numbers are just arbitrary identifiers — really, they are just categories
that happen to be numbered.

One consideration to be made with this approach is that one-hot encoding can drastically increase
the number of columns, especially if each column has many unique values to encode. Here we have
encoded the Sex, Population, Replicate, and Vial columns, which have 2, 5, 3, and 10 unique values
respectively, so in total we have created

2+5+3+10=20

new columns as a result of the one-hot encoding (16 if we replace the original columns). This is not
a significant increase in features, and we will also selectively choose features in the next subsection, so
this should not be a concern. Overall, this results in 32 columns (31 of which are features), which is
summarised in Table [I] below. Some of the one-hot encoded columns have been omitted for brevity.

] Column Name \ Data type \ Description ‘
Species string Species name
Population Binjour, ..., Population_Wahruna | bool Population indicators
Temperature int Rearing temperature
Vial 1, ..., Vial 10 bool Vial indicators
Replicate_1, ..., Replicate_3 bool Replicate indicators
Sex male, Sex female bool Sex indicators
Thorax length float Thorax length (mm)
12, 13p, 13d, 1pd, 13, wil, w2, w3 float Various wing measurements (mm)
wing loading float Wing to thorax ratio

Table 1: Cleaned Dataset Columns

2.3 Feature Selection using Mean Decrease in Impurity (MDI)

Feature selection is the idea of selecting only the most relevant features for the task, while discarding
redundant or inconsistent features. This can be crucial for datasets with a large number of rows and/or
a large number of features (particularly if ngeatures > Mrows), because more features leads to more com-
putation and a more complex model. Given two models with comparable predictive performance on the
training data, we would in general prefer the simpler model, as it is less likely to overfit to unseen data
(this corresponds to a lower model variance in the bias-variance tradeoff).

The dataset here is not too large, but it can still be useful to do some feature importance analysis,
e.g. for interpretability of the data and results. Here we will train a random forest classifier/] on the

'Later we will also use a random forest model for classification, but here we train it only for the purpose of feature
selection.
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training data, and rank features by their mean decrease in impurity (MDI).

In a decision tree, the purity of a node measures how “mixed” the data points within are, with
respect to their classes. A node is 100% pure if all its data points belong to one class. One of the
most common measures of purity is Gini impurity, which is a measure of how well the decision tree’s
misclassification rate improves as compared to a random labelling scheme based on the distribution of
classes in the data. The mean decrease in impurity for a feature then calculates how much the feature
contributes to decreasing the impurity in each tree in the ensemble, weighted by the number of samples
in each node, and then averaged across all the trees in the ensemble (Breiman, .

In short, the idea is that features that are more effective at distinguishing between classes
will lead to larger reductions in impurity when they are used as decision nodes, and so are
more important.

Feature Importances by MDI
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Figure 1: Feature Importances by Mean Decrease in Impurity (MDI)

Using this metric for feature importance, we can get an idea of how important each predictor is.
Figure [1| shows the mean decrease in impurity for each of the 31 predictors in the dataset, with the
standard deviation across the trees in the ensemble (of which there were 100) overlayed as black bars.
In summary, we are left with 14 columns (13 predictors) after the feature selection process.

e The variables corresponding to the wing and thorax measurements are by far the most important
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predictors of species classification, which is to be expected.

e The sex and Temperature variables are somewhat important, so we will leave these in the dataset.
However, as there are two sex categories, we can remove one (an indicator for one tells us what
the indicator for the other will be).

e The replicate and vial variables have relatively small MDI values, and so are not important pre-
dictors. To save on computational efforts and model complexity, we will remove these columns.

e While most of the population variables have insignificant MDI values, Population Binjour is a
somewhat significant predictor. This indicates that perhaps knowing that a fruit fly comes from
Binjour can be a distinguishing feature, but not so for any of the other locations. As such, we
remove all of the population variables except for Population Binjour.

3 Model Selection

In this section, we explore the use of several models for the species classification problem, and evaluate
their results on a test dataset. 70% of the data was used for training (the same data as was used for
feature selection), and 30% for testing.

3.1 Logistic Regression

A logistic regression classifier is like a linear regression model, but applies a sigmoid to the output to
constrain its range to [0, 1]. For the two-class classification problem, the classifier will simply pick the
class corresponding to the highest probability.

3.1.1 Training

The main consideration for logistic regression is whether we choose to apply regularisation when training,
and if so, which regularisation scheme we choose.

Regularisation is a technique used to prevent overfitting by penalising large coefficients to keep them
small. For a logistic regression model, the most common choices are the L; penalty term and the L,
penalty term. The main difference is that L, regularisation tends to result in sparse solutions; that is,
it is more likely to set particular coefficients to zero. This can be viewed as a sort of feature selection,
and can so be helpful for interpretability. The Ly penalty penalises larger coefficients more heavily than
it does smaller ones, so it tends to result in solutions with smaller (but not zero) coefficients on average.

We will refer to the three models as the “no-reg” model, the L; model, and the L, model. To
select the optimal value of A for the L; and L, models, we perform stratified 5-fold cross validation
(which ensures the folds have roughly the same proportion of species types). Figure [2| displays the cross
validation mean accuracy scores for a range of A values for both the L; and Ls; models. For the L; model,
the optimal value was A = 0.2, and for the L, model, the optimal value was A = 0.1. Interestingly, the
mean accuracy score decreases as the regularisation strength A increases for both models. This suggests
that this problem may not require much (if any) regularisation at all.
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Grid Search CV Results for L1 and L2 Regularisation
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Figure 2: Grid Search Cross Validation Results for L; and L, Penalty Models
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Figure 3: Sorted Coeflicients of Logistic Regression Models

The (sorted) feature coefficients after training for each model are given in Figure . As expected, the
unregularised model has larger (in magnitude) coefficients than the regularised models. The Ly model
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penalises large coefficients, so it has comparatively small (in magnitude) coefficients. It is a bit difficult
to tell from the graph, but the L; model has zeroed the coefficients corresponding to the 13p, 1pd, 13,
and w3 features, which are all wing measurements. In comparison, neither the no-reg nor the Ly model
had any zero coefficients.

3.1.2 Results and Discussion

The results are tabulated in Table[2 The no-reg model and the L; model perform very similarly on the
training set, with each model attaining around 82% training accuracy. The L, model performs slightly
worse, attaining around 78% training accuracy. Interestingly, we note that the no-reg model performs
the best on both the training and test datasets. That being said, the differences between the no-reg
and L; models are quite small (<1% difference in both the training and test accuracy). The Ly model
however does perform noticeably worse than the other two.

This does corroborate with what we found in Figure [2| — which is that the mean accuracy score
tended to get worse as regularisation strength increased, so indeed it is likely that this problem does not
require regularisation.

Model No-reg | L, Lo
Training accuracy | 0.824 | 0.822 | 0.784
Test accuracy 0.794 | 0.784 | 0.751

Table 2: Performance of Logistic Regression Models

The confusion matrices (on the test dataset) for all three models are given in Figure 4. The no-reg
and L; models specifically have a very similar number of correct and incorrect classifications for each
species type.
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Figure 4: Confusion Matrix (test dataset) for Logistic Regression Models
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3.2 Random Forest

A random forest is an ensemble model consisting of decision trees. A decision tree can be thought of as
a model that predicts the classification (alternatively, the probability distribution of classifications) of a
given input by answering a series of yes-no questions about the input. Each question is a decision node
in the tree. A random forest’s prediction is then the one with the highest mean probability across all
its trees.

Usually, each tree is trained on bootstrap samples of the dataset, which creates variation in the
learned trees. Random forests also employ a technique to further decrease the correlation between trees,
which is to only allow each tree to consider a random subset of predictors when training and creating
the decision nodes.

3.2.1 Training

During training, there are two important hyperparameters that we need to consider — the maximum
depth of each tree in the forest, and the number of trees in the forest (i.e. the ensemble size).
For the former, we can use cross-validation to select the optimal depth for each of the trees.

Grid Search CV Results for Varying Max Tree Depths
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Figure 5: Grid Search Cross Validation Results for Varying Tree Depths

Figure [5| displays the cross validation mean accuracy scores for a range of max tree depths. As the
max tree depth increases, the CV score also tends to increase. This is maximised at a depth of 15, which
we will pick for our final classifier, as it is conveniently also a good balance between high CV score and
relatively low model complexity. For the sake of comparison, we will also train a random forest classifier
with a depth of 5, which will be a much simpler model.
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Estimate of Model Variance vs. Random Forest Size
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Figure 6: Estimate of Model Variance vs. Random Forest Size

For the latter hyperparameter (ensemble size), it can be shown that adding more ensemble members
to the model reduces the model Varianceﬂ without increasing the model bias (Lindholm et al., 2022).
This means that having a larger number of trees in the forest does not lead to overfitting, so the main
motivation for choosing a smaller number of trees is the computational cost (as each tree needs to be
fit during training).

To pick an optimal number of trees, we estimate the model variance for the random forest classifier
with varying numbers of trees. The results are given in Figure[6] As expected, the model variance tends
to decrease as the number of ensemble members increases until it eventually plateaus. For our random
forest classifiers, we will pick an ensemble of 40, as it is roughly where the variance plateaus, and so
there is little benefit in picking a larger forest.

3.2.2 Results and Discussion

The results are tabulated in Table 3] Two random forest classifiers were trained on the training dataset
— one with a max tree depth of 5 and one with 15. Both classifiers were trained with 40 trees in the
forest. We can see from the results that both random forest classifiers exhibit similar behaviour: they
performed relatively well on the training dataset but noticeably worse on the test dataset. This suggests
that both models are possibly overfitting to the training data. This is almost certainly the case for the
15-depth model, as it has near perfect accuracy on the training set, but 22% less accuracy on the test
dataset.

The confusion matrices for both random forest models are given in Figure [7] Both models correctly

2the model variance is still limited by the average correlation between the trees.
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Model max_depth=>5 | max_depth=15
Training accuracy 0.822 0.998
Test accuracy 0.709 0.778

Table 3: Performance of Random Forest Models

classified roughly the same number of buzzatii species, but the 15-depth model correctly classifies more
aldrichi species. It appears that the 5-depth model struggles most with classifying measurements whose
true species type is aldrichi (as it only correctly classifies &~ 63% of these).
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Figure 7: Confusion Matrix (test dataset) for Random Forest Models

3.3 Support Vector Machine (SVM)

A support vector machine (SVM) for the two-class classification problem aims to find a hyperplane in
the feature space that best separates the data points. This is, intuitively, the hyperplane that has the
largest margin between the two classes, that is, the hyperplane such that the distance to the nearest
data point for each class is maximised (Lindholm et al., . In the case where the data is not linearly
separable, the original feature space can be transformed into a higher-dimensional feature space where
it may be easier to linearly separate the data (Boser, Guyon, and Vapnik, . This is essentially
what we do when we make the choice of kernel in an SVM.
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3.3.1 Training

For a SVM, a key consideration is the kernel type that is used, which affects the notion of similarity
between data points and thus the shape of the decision boundary in the trained classifier. Another
consideration is the regularisation strength A. For this problem, we consider two choices of kernel: a
Gaussian or radial basis function (RBF) kernel, and a polynomial kernel. The Gaussian kernel uses
Euclidean distance as a notion of similarity, whereas the polynomial kernel uses cosine similarity on
polynomial transformations of the data. Given that these kernels involve computing distances, a stan-
dardisation step was taken here to normalise each of the features before feeding it to the SVM.

Figure |8 shows the results of grid search CV for varying regularisation strengths and for the two
kernels mentioned above, RBF and polynomial (with varying degrees). The effect of regularisation
strength is similar to what was observed with the logistic regression model — stronger regularisation
tends to be correlated with weaker CV performance. The RBF kernel and degree-1 polynomia]ﬁ kernel
performed the best, with the higher degree polynomials performing considerably worse. For both the
RBF and degree-1 polynomial, the optimal regularisation value was A = 0.2.

Grid Search CV Results for SVM Models
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Figure 8: Grid Search CV Results for Varying SVM Kernels and Regularisation Strength A

It is interesting that the RBF kernel performs just as well as the degree-1 polynomial kernel, since
the degree-1 polynomial kernel has a linear decision boundary, whereas the RBF kernel (and the higher-
degree polynomial kernels also) has a non-linear decision boundary. Although it is not possible to
visualise the decision boundary without e.g. dimensionality reduction of the feature space, we know
in the 2-dimensional case, the decision boundaries tend to contract around data points that are close

3Note that this differs slightly from a linear kernel in the scikit-learn implementation: the degree-1 polynomial
kernel has an additional bias parameter. For this reason we will continue to refer to it as a polynomial kernel.
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to each other (Varoquaux, n.d.), so one possible reason for the good performance during CV is the
flexibility of the model.

3.3.2 Results

The results are tabulated in table |4, We can see that the SVM with the RBF kernel performed better
across both the training and test datasets. However, the RBF kernel model seems to have overfit slightly
to the training set and moreso than the degree-1 kernel model, which is as expected, given the comments
in the previous subsection about the flexibility of the RBF kernel.

Model RBF kernel | Degree-1 polynomial
Training accuracy 0.886 0.824
Test accuracy 0.821 0.782

Table 4: Performance of SVM Models

Figure [0 gives the confusion matrices for both SVM classifiers. Similarly to the previous model
comparisons, both SVM classifiers are able to correctly classify roughly the same number of buzzatii
species measurements, and the main difference between the two is the number of incorrect classifications
of measurements that are aldrich: flies.
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Figure 9: Confusion Matrix (test datast) for SVM Models
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4 Conclusion

In this report, we explored the use of several machine learning models to classify the species of a
Drosophila fruit fly based on various wing and thorax traits. Fach of these models were able to provide
some insight into the dataset, and performed reasonably well on the classification task, suggesting that
the wing and thorax traits of Drosophila flies can be a good predictor of the species that a particular
fly belongs to.

The SVM classifier with an RBF kernel performed the best on the test dataset, being the only
classifier to achieve a test accuracy above 80%. Many of the other models achieved an accuracy in the
high 70%s, and the logistic regression model with no regularisation in particular did quite well given the
simplicity of its decision boundary (which is linear).

As noted in the training and cross-validation of several of the models, greater regularisation tended
to result in worse performance. In the case of the logistic regression model, no regularisation yielded the
best results on the test dataset. In the case of the SVM, a small regularisation term of A = 0.2 yielded
the best results on the test dataset. This suggests that little (if any) regularisation is required for this
problem, and that the weights learned by the un-regularised models were already quite appropriate in
magnitude.

For each model type explored, each variation of the model correctly classified roughly the same
number of buzzatii species. The main distinguishing factor between the models seems to have been the
performance on the aldrichi species — that is, the models with a higher test accuracy tended to correctly
classify aldrichi species more often. In a sense, this means that the buzzatii species was “easier” to
classify for each of the models in general. This may suggest that there is a stronger relationship between
the various wing and thorax measurements collected for the aldrichi fruit flies as compared to the buzzatii
fruit flies.

A further extension of this report could explore the use of more machine learning models. However,
the results indicate that a model with a simple linear decision boundary seems to already perform
quite well on the dataset, so perhaps a more complex model will not improve much on the performance
already seen here. A more practical and potentially insightful extension could be to consider more of
the Drosophila datasets (Sandra B. Hangartner and Griffin, 2015) — either individually or combined —
to see if other traits of the Drosophila can provide more insight into the species.
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