
Nesterov’s Accelerated Gradient Descent Method
Limao Chang

1 Introduction

At the core of machine and deep learning methods is optimisation, the process in which a model
learns optimal parameters to minimise a relevant objective function. The basis of many of these
optimisation algorithms is gradient descent (GD), an algorithm which steps along the direction
of steepest descent in the objective function at each iteration. It is a simple and intuitive
algorithm, but suffers from some limitations as a result, especially when we start to consider
more complicated objective functions.

In this tutorial paper, we will introduce Nesterov’s Accelerated Gradient Descent (AGD)
method, which uses acceleration- and momentum-based concepts to overcome the limitations
found in GD. Before doing so, we will cover the GD and classical momentum methods, as these
are prerequisite algorithms for AGD, and also serve as algorithms we can compare against AGD.

2 General Framework

We first introduce a general optimisation framework for the algorithms discussed in this paper.
The aim is to minimise1 some objective function f(θ) with respect to its parameter(s) θ. We
assume that f is differentiable, that is ∇f exists. In the context of machine and deep learning,
the objective is typically the loss function, where the loss is a metric of how well a model
performs on a given dataset. When we talk about a model “learning”, what we mean is we are
finding the parameter(s) θ that minimise the loss f(θ). In practice, and especially with (very)
deep learning models, it is not possible to find the global minima, in which case we usually
settle for a good local minima instead.

We start from an initial guess θ0 in the parameter space (for simplicity we’ll assume a
nonconstrained parameter space). Then we update our current guess θt at iteration t by stepping
in some direction to arrive at the next guess θt+1. Mathematically, we can write the general
parameter update at iteration t+ 1 as

θt+1 = θt + vt+1. (1)

Here vt+1 is called the velocity vector, and is the step we take from θt to θt+1. Whether v is
subscripted by t or t+1 is a matter of convention – here we choose the latter as it is computed
in the (t + 1)th iteration. We can also write the parameter update in terms of the velocity
vector:

vt+1 = θt+1 − θt. (2)

To compute vt+1 in (2), it is usually more useful to write it recursively, i.e. in terms of vt, since
if we know θt+1 then we already know vt+1.

For the optimisation algorithms we discuss, there are also two hyper-parameters of inter-
est: the learning rate η ≥ 0, which determines the step size taken at each iteration, and (for
momentum-based methods) the momentum coefficient α, which determines the momentum ef-
fect size at each iteration. Typically, η is a small value on the order of 10−4 to 10−1, and α
is a value between 0 and 1 (Baughman and Liu, 1995), with a widely-used and empirically-
supported value of 0.9 (Ruder, 2016). In general, these hyperparameters may be adaptive –
that is, we have ηt and αt instead of η and α – but for simplicity in this paper we will take
them to be fixed values.

1Note we can turn a maximisation problem on f(θ) into a minimisation problem by taking the objective to
be −f(θ).

1



3 Gradient Descent (GD)

We begin with a brief overview of the GD algorithm. At each iteration, we simply take a step
in the direction of steepest descent based on our current position; i.e., in the (t+1)th iteration,
this is the direction given by −∇f(θt), where ∇f is the gradient of f . It can be shown that
taking a step in the stepest descent direction decreases the function value (provided the step
we take is small enough). The step taken at iteration t+ 1 is then given by

vt+1 = −η∇f(θt), (3)

where η controls the size of the step taken in the steepest descent direction. The full update
for GD at iteration t+ 1 is thus

θt+1 = θt + vt+1 = θt − η∇f(θt). (4)

A Python implementation of the GD algorithm is provided in Algorithm 1 in Appendix A.

4 Classical Momentum

In each iteration of GD, we only rely on the gradient value of the current iterate. If we were to
devise an extension to GD, a natural idea might be to use information from previous iterates in
addition to the current iterate. Indeed, one extension of GD that uses this idea is momentum.
The idea is to build up inertia in a particular search direction, in the hopes of speeding up
convergence towards a minima (Brownlee, Jason, 2021). We will see that momentum can also
be useful to help overcome and skip over local minima, as well as regions with very small
gradients.

This concept of momentum is fairly intuitive and is borrowed from physics. The classic
example is to consider a ball rolling down a hill. As it continues rolling, it builds up more
momentum in the direction it has already travelled, which helps it to roll past any plateaus
(local minima) or small valleys to get to the bottom of the hill (global minima).

With classical momentum, the step taken at iteration t+ 1 is given by

vt+1 = αvt − η∇f(θt) = α(θt − θt−1)− η∇f(θt). (5)

The first term is the momentum term, which is the step taken in the previous iteration t scaled
by the momentum coefficient α. Notice that if α = 0, this is just the GD update! The second
term is the same as in GD – the steepest descent direction, scaled by the learning rate η. The
full parameter update at iteration t+ 1 is then given by

θt+1 = θt + vt+1 = θt + α(θt − θt−1)︸ ︷︷ ︸
momentum

− η∇f(θt)︸ ︷︷ ︸
GD

. (6)

The intuition behind the momentum term here is that we want to travel some distance
in the previous direction we stepped. If, in the past, we generally kept travelling in one
direction, then we want to build up inertia and speed up our search in this direction – similarly
to how the ball would gain momentum in one particular direction as it rolled (Brownlee, Jason,
2021).

To see this notion of a “general past search direction” more explicitly, notice that, by the
recursive definition of vt+1, each iteration implicitly depends on all previous iterations of the
algorithm through vt. Since α ∈ [0, 1], recent search directions contribute more to αvt than
past search directions. Indeed, by expanding the recursive term αvt, we can see that it is an

2



exponentially weighted average of past search directions. The following exercise makes this idea
explicit.

A Python implementation of the classical momentum algorithm is provided in Algorithm 2
in Appendix A.

Exercise 4.1. Using the expression for vt+1 in (5), show that vt+1 can be written as

vt+1 = −η
t∑

i=0

αt−i∇f(θi),

that is, the step taken at each iteration is an exponentially weighted average of all previous GD
steps. You may take v0 = 0, since at the first step we have no “memory” of any momentum.

5 Nesterov’s Accelerated Gradient Descent (AGD)

We are now ready to look at Nesterov’s AGD method. We present two derivations of this
method, and offer interpretations for each. We claim for now that AGD can be thought of as
consisting of a momentum step followed by a gradient step, and show how we can arrive at this
conclusion by starting from the original AGD formulation.

5.1 Original Nesterov AGD Method

The original AGD method was proposed by Yurii Nesterov in his paper on gradient descent for
minimising composite functions (Nesterov, 2013). For this derivation, it is helpful to think of
each iteration as two stages: the GD stage and the “momentum-like” stage (Melville, 2016).
We denote by ϕ the result of the GD stage, so that ϕt+1 is the result of the GD stage at the
(t+ 1)th iteration. Then the full AGD parameter update for one iteration is given by

ϕt+1 = θt − η∇f(θt), (GD stage)

θt+1 = ϕt+1 + α(ϕt+1 − ϕt). (momentum-like stage) (7)

Though the update itself appears simple, the intuition is a bit hard to grasp. We will derive an
alternative expression for θt+1 that makes the link to momentum more explicit. On expanding
ϕt+1 in (7), we have

θt+1 = (θt − η∇f(θt)) + α[(θt − η∇f(θt))− (θt−1 − η∇f(θt−1))]

= θt − η∇f(θt) + α(θt − θt−1)− α(η∇f(θt)− η∇f(θt−1)).

=⇒ vt+1 = −η∇f(θt)︸ ︷︷ ︸
GD

+α(θt − θt−1)︸ ︷︷ ︸
momentum

−α(η∇f(θt)− η∇f(θt−1))︸ ︷︷ ︸
gradient momentum

. (8)

We can now get an idea of what the AGD update consists of. The first part of this update,
labelled GD and momentum above, is exactly the update for classical momentum. Then the
difference between classical momentum and AGD is that there is another momentum step, but
in terms of the gradient iterates ∇f(θt) and ∇f(θt−1) instead, which we will call “gradient
momentum”.

However, while this is an interesting decomposition of the parameter update, it is perhaps
still a bit unclear what we mean by AGD consisting of a momentum step followed by a GD
step. To resolve this, we turn to a different derivation of Nesterov’s AGD method.

3



5.2 Sutskever’s Derivation

Sutskever presents an alternative derivation of Nesterov’s AGD (Sutskever et al., 2013). We
shift our perspective to consider the momentum-like stage θ as the first stage and the GD stage
ϕ as the second stage. This essentially amounts to following the same steps as in the NAG
method, except we offset what we consider to be the end of an iteration by one stage (Melville,
2016). To illustrate this more explicitly, consider the two following AGD steps:

ϕt+1 = θt − η∇f(θt)

θt+1 = ϕt+1 + α(ϕt+1 − ϕt)

ϕt+2 = θt+1 − η∇f(θt+1)

θt+2 = ϕt+2 + α(ϕt+2 − ϕt+1)

In Sutskever’s derivation, the computation of θt+1 and ϕt+2 would form one iteration:

θt+1 = ϕt+1 + α(ϕt+1 − ϕt)

ϕt+2 = θt+1 − η∇f(θt+1)

Now that these stages belong to the same iteration, we need to relabel the iteration indices:

θt+1 = ϕt + α(ϕt − ϕt−1)

ϕt+1 = θt+1 − η∇f(θt+1)

Next, we can expand θt+1 in the expression for ϕt+1 to obtain the expression for a full parameter
update in a single line. We now also note that, since ϕ is the result of each iteration, we relabel
v to be in terms of ϕ instead; that is, vt+1 = ϕt+1 − ϕt in the (t+ 1)th iteration. We have

ϕt+1 = ϕt + α(ϕt − ϕt−1)− η∇f(ϕt + α(ϕt − ϕt−1))

= ϕt + αvt − η∇f(ϕt + αvt).

Now that we have shifted our end of interaction by one stage, the very first GD step ϕ1 =
θ0 − η∇f(θ0) is missing from this set of updates. However, this isn’t really an issue, since θ0

is arbitrarily chosen anyway – if we’d like, we could think of this starting point as a GD step
from some other starting point instead.

For the sake of consistency and for ease of comparison with the original AGD derivation, let
us relabel ϕ to θ now that we are done with the derivation:

θt+1 = θt + αvt − η∇f(θt + αvt) (9)

It is now clear what we mean when we say that AGD is a momentum step followed by a GD
step – momentum is first applied to the current iterate θt via θt + αvt, and then we take a
step in the steepest descent direction from this point as opposed to θt. Similarly to classical
momentum, if α = 0, this is simply the GD update. Now the velocity vector at the (t + 1)th
iteration can be written as

vt+1 = αvt − η∇f(θt + αvt) = α(θt − θt−1)− η∇f(θt + α(θt − θt−1)). (10)

Compare this with the velocity vector for classical momentum in (5).
A Python implementation of the Nesterov AGD algorithm (using Sutskever’s formulation)

is provided in Algorithm 3 in Appendix A.
As an aside, there is another popular derivation of AGD by Bengio (Bengio, Boulanger-

Lewandowski, and Pascanu, 2013). According to Melville (Melville, 2016), this formulation is

4



perhaps a bit easier to integrate into existing software. However, the derivation is a bit more
involved and so we do not delve into it here.

Exercise 5.1. Using the expression for vt+1 in (8) (that is, the velocity vector from the
original AGD derivation), show that vt+1 can be written as

vt+1 = −η∇f(θt)− η
t∑

i=0

αt+1−i∇f(θi).

As with Exercise 4.1, you may take v0 = 0, so that

v1 = −η∇f(θ0) + αv0 − αη∇f(θ0) = −(1 + α)η∇f(θ0).

6 Comparison of Classical Momentum and Nesterov’s AGD

Classical momentum and Nesterov’s AGD are similar in that they are both momentum-based
extensions of gradient descent. In this section we discuss the differences between the two
methods. Recall the parameter updates for classical momentum and Nesterov’s AGD:

θt+1 = θt + α(θt − θt−1)− η∇f(θt) (momentum)

θt+1 = θt + α(θt − θt−1)− η∇f(θt + α(θt − θt−1)) (AGD)

As we remarked earlier, the two updates are pretty similar. The difference is in when we take
the step in the steepest descent direction. In classical momentum, we can think of taking both
the momentum and gradient steps at the same time and summing the direction vectors, since we
take the gradient step at the iterate θt. In Nesterov’s AGD, the gradient step only happens
after the momentum step, that is we step in the steepest descent direction at the point
θt + α(θt − θt−1).

Figure 1: Classical Momentum vs Nesterov’s AGD Parameter Update

The difference can be seen visually in Figure 1. For this reason, the gradient step in AGD is
sometimes called a “lookahead” gradient step – we “look ahead” to the momentum step, and then
take a step in the steepest descent direction. Computing the gradient at a point that is slightly

5



in the direction of momentum can help with reducing overshooting and oscillatory behaviour in
the GD trajectory, e.g. in regions with high/sharp curvature. In practice, this generally leads
to faster convergence and better generalisation (Bengio, Boulanger-Lewandowski, and Pascanu,
2013).

7 Discussion of GD Limitations

GD is a simple and intuitive algorithm, but also has several issues that mainly stem from it only
using gradient information at each step. We will show some of these problems and illustrate
how momentum-based methods like classical momentum and Nesterov’s AGD can overcome
them. First we consider the Rosenbrock function, which is given by

f(x, y) = (a− x)2 + b(y − x2)2

for constants a, b. This is a non-convex function typically used for benchmarking optimisation
algorithms. It is characterised by a long and narrow valley with a global minimum at (x, y) =
(a, a2). This function is difficult for GD methods to optimise, due to the valley’s elongated
shape. Its gradient diminishes very quickly as we move away from the global minimum along
the valley. This is a problem for GD, as it means the steps taken will be too small for the
algorithm to converge to the global minimum.

We demonstrate this by running GD, classical momentum, and AGD with hyperparameters
η = 0.00015 and α = 0.9 on the function with a = 1, b = 100. The trajectory of the three
algorithms is plotted against the contour plot of f in Figure 2 below.

Figure 2: GD, Classical Momentum, and AGD on f(x, y) = (1− x)2 + 400(y − x2)2

Indeed, we see that the GD trajectory gets stuck shortly after it enters the valley – the
gradient values are too small for it to be able to make any more progress. However, the

6



momentum and AGD trajectories oscillate back and forth between the valley, making it less
likely to get stuck in regions with very small gradients. While both algorithms eventually fall
into the valley, their respective momentum mechanisms allow them to speed up their search in
the direction of the global minimum, and they are able to still make progress towards it.

Another issue that can arise when using GD is when the objective is non-convex and has
more than one local minima. Generally, there is no way to tell whether we are at a global or
local minima based on gradient information alone. This can be problematic for convergence and
efficiency, since ∇f will (similarly to the previous situation) be near zero around local minima,
resulting in insignificant parameter updates. To demonstrate this, consider applying the three
algorithms to the objective f(x) = x4 − 3x3 + 2x2 + x with starting points x0 = −0.5 and
x0 = 2.0 in Figure 3 below. All three algorithms used a learning rate of η = 0.01, and were
halted early if ∥∇f(xt)∥ < 0.0001 with a maximum of 500 iterations. The final iterate and
number of iterations to convergence for each run are tabulated in Table 1.

Figure 3: GD, Classical Momentum, and AGD on f(x) = x4 − 3x3 + 2x2 + x with x0 = −0.5, 2

We can see that GD is only able to reach the global minima for the starting point x0 = −0.5.
For x0 = 2.0, GD gets stuck at a local minimum, and isn’t able to make further progress. The
classical momentum and AGD algorithms, however, overcome the local minimum with their
respective momentum steps, and are able to make it to the global minima with both starting
points. We also note that the trajectory of classical momentum and AGD “bounce” around
the global minima point once they are at the bottom-most valley due to the momentum term
causing the iterates to overshoot slightly.

Algorithm Starting Iterate Final Iterate Number of Iterations

GD -0.5 -0.175 125
GD 2.0 1.425 312

Classical Momentum -0.5 -0.175 64
Classical Momentum 2.0 -0.175 133

Nesterov’s AGD -0.5 -0.175 87
Nesterov’s AGD 2.0 -0.175 116

Table 1: GD, Classical Momentum, and AGD Results

7



Appendix A. Python Implementation of Methods

Note that the algorithms here take a tol parameter, which is a termination threshold that halts
the algorithm if we reach an optimal point before the max number of iterations have been
reached. Also, the functions return all of the iterates as a numpy array rather than just the
final iterate – this is mostly for convenience for the plots used in this paper.

Algorithm 1 Gradient Descent

def gradient_descent(grad_f, x0, lr=1e-3, max_iter=100, tol=1e-4):

"""

Gradient Descent algorithm

Parameters

----------

‘grad_f‘: gradient function

‘x0‘: initial iterate

‘lr‘: learning rate, defaults to 0.001

‘max_iter‘: max number of iterations to run, defaults to 100

‘tol‘: termination threshold for gradient norm

"""

xt = np.copy(x0)

grad_f_xt = grad_f(xt)

trajectory = [xt]

t = 1

while t < max_iter and np.linalg.norm(grad_f_xt) > tol:

xt = xt - lr * grad_f_xt

grad_f_xt = grad_f(xt)

trajectory.append(xt)

t += 1

trajectory = np.array(trajectory)

return trajectory

Algorithm 2 Momentum

def momentum(grad_f, x0, lr=1e-3, alpha=0.9, max_iter=100, tol=1e-4):

xt = np.copy(x0)

grad_f_xt = grad_f(xt)

trajectory = [xt]

t = 1

while t < max_iter and np.linalg.norm(grad_f_xt) > tol:

if t == 1: # no momentum in first step

vt = -lr * grad_f_xt

else:

vt = alpha * (xt - trajectory[-2]) - lr * grad_f_xt

xt = xt + vt

grad_f_xt = grad_f(xt)

trajectory.append(xt)

t += 1

trajectory = np.array(trajectory)

return trajectory

8



Algorithm 3 Nesterov’s AGD

def nesterov_agd(grad_f, x0, lr=1e-3, alpha=0.9, max_iter=100, tol=1e-4):

xt = np.copy(x0)

grad_f_xt = grad_f(xt)

trajectory = [xt]

t = 1

while t < max_iter and np.linalg.norm(grad_f_xt) > tol:

if t == 1:

vt = -(1 + alpha) * lr * grad_f(xt) # derived from Ex 5.1

else:

prev_xt = trajectory[-2]

vt = alpha * (xt - prev_xt) - lr * grad_f(xt + alpha * (xt - prev_xt))

xt = xt + vt

grad_f_xt = grad_f(xt)

trajectory.append(xt)

t += 1

trajectory = np.array(trajectory)

return trajectory

9



Appendix B. Exercise Solutions

Solution to Exercise 4.1. This can be shown by recursively expanding the velocity terms vi.
We have

vt+1 = αvt − η∇f(θt)

= α(αvt−1 − η∇f(θt−1))− η∇f(θt)

= α2vt−1 − ηα∇f(θt−1)− η∇f(θt)

= α2(αvt−2 − η∇f(θt−2))− ηα∇f(θt−1)− η∇f(θt)

= α3vt−2 − ηα2∇f(θt−2)− ηα∇f(θt−1)− η∇f(θt)

...

= αt+1v0 − ηαt∇f(θ0)− ηαt−1∇f(θ1)− · · · − ηα∇f(θt−1)− η∇f(θt)

= αt+1v0 − η

t∑
i=0

αt−i∇f(θi).

= −η
t∑

i=0

αt−i∇f(θi).

□
Solution to Exercise 5.1. Similarly to Exercise 4.1, this can be shown by recursively expand-
ing the velocity terms vi. However, the expansion is a bit more involved. We have

vt+1

= −η∇f(θt) + αvt − αη(∇f(θt)−∇f(θt−1))

= −(1 + α)η∇f(θt) + αη∇f(θt−1) + αvt

= −(1 + α)η∇f(θt)− α2η∇f(θt−1) + α2η∇f(θt−2) + α2vt−1

= −(1 + α)η∇f(θt)− α2η∇f(θt−1)− α3η∇f(θt−2) + α3η∇f(θt−3) + α2vt−2

...

= −(1 + α)η∇f(θt)− α2η∇f(θt−1)− α3η∇f(θt−2)− · · · − αtη∇f(θ1) + αtη∇f(θ0) + αtv1

Now, using the derivation for v1 given in the exercise, we have

αtη∇f(θ0) + αtv1 = αtη∇f(θ0)− αtη(1 + α)∇f(θ0) = −αt+1η∇f(θ0),

so

vt+1 = −(1 + α)η∇f(θt)− α2η∇f(θt−1)− α3η∇f(θt−2)− · · · − αtη∇f(θ1)− αt+1η∇f(θ0)

= −(1 + α)η∇f(θt)− η

t−1∑
i=0

αt+1−i∇f(θi)

= −η∇f(θt)− η

t∑
i=0

αt+1−i∇f(θi),

as required. □

10



References

Baughman, D. and Y. Liu (1995). “2 - Fundamental and Practical Aspects of Neural Comput-
ing”. In: Neural Networks in Bioprocessing and Chemical Engineering. Ed. by D. Baughman
and Y. Liu. Boston: Academic Press, pp. 21–109. isbn: 978-0-12-083030-5. doi: https://d
oi.org/10.1016/B978-0-12-083030-5.50008-4. url: https://www.sciencedirect.co
m/science/article/pii/B9780120830305500084.

Bengio, Y., N. Boulanger-Lewandowski, and R. Pascanu (2013). “Advances in optimizing re-
current networks”. In: 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing, pp. 8624–8628. doi: 10.1109/ICASSP.2013.6639349.

Brownlee, Jason (2021). Gradient Descent With Momentum from Scratch. https://machin
elearningmastery.com/gradient-descent-with-momentum-from-scratch/. [Online;
accessed 29-April-2024].

Melville, J. (2016). Nesterov Accelerated Gradient and Momentum. https://jlmelville.git
hub.io/mize/nesterov.html.

Nesterov, Y. (2013). “Gradient methods for minimizing composite functions”. In: Mathematical
programming 140.1, pp. 125–161.

Ruder, S. (2016). “An overview of gradient descent optimization algorithms”. In: CoRR
abs/1609.04747. arXiv: 1609.04747. url: http://arxiv.org/abs/1609.04747.

Sutskever, I. et al. (2013). “On the importance of initialization and momentum in deep learn-
ing”. In: Proceedings of the 30th International Conference on Machine Learning. Ed. by S.
Dasgupta and D. McAllester. Vol. 28. Proceedings of Machine Learning Research 3. Atlanta,
Georgia, USA: PMLR, pp. 1139–1147. url: https://proceedings.mlr.press/v28/sutsk
ever13.html.

11

https://doi.org/https://doi.org/10.1016/B978-0-12-083030-5.50008-4
https://doi.org/https://doi.org/10.1016/B978-0-12-083030-5.50008-4
https://www.sciencedirect.com/science/article/pii/B9780120830305500084
https://www.sciencedirect.com/science/article/pii/B9780120830305500084
https://doi.org/10.1109/ICASSP.2013.6639349
https://machinelearningmastery.com/gradient-descent-with-momentum-from-scratch/
https://machinelearningmastery.com/gradient-descent-with-momentum-from-scratch/
https://jlmelville.github.io/mize/nesterov.html
https://jlmelville.github.io/mize/nesterov.html
https://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
https://proceedings.mlr.press/v28/sutskever13.html
https://proceedings.mlr.press/v28/sutskever13.html

	Introduction
	General Framework
	Gradient Descent (GD)
	Classical Momentum
	Nesterov's Accelerated Gradient Descent (AGD)
	Original Nesterov AGD Method
	Sutskever's Derivation

	Comparison of Classical Momentum and Nesterov's AGD
	Discussion of GD Limitations

